# Model: UT-212 

(Product Name: RS-232 Isolated Converter )

## Datasheet

## 1. Overview

UT-212 RS-232 extender with optoelectronic isolation allows extending the communication distance between 2 sets of asynchronous RS-232 communication devices to 12 km .

The optoelectronic isolation technology fully isolated the loop circuit between electric part and ground wire; this protects the communication devices from interference of power and ground loop circuit, surge. It changes the single port transmission into dual wire balance transmission, which increase the communication distance.

UT-212 is in mini size, there are no special requirement on the wire, and no need for external power; it is convenient to use.

UT-212 is widely used in point to point RS-232 communication, the connection between multi users terminal and host, RS-232 long distance control system, SPC exchange billing terminal, satellite receiver.

## 2. Major Functions \& Features

- RS-232 Isolated converter


## 3. Technical Parameters

- Enables RS-232 transmission distance to 12 km
- Balance current transmission, strong anti-jamming
- Adopts optical isolation, avoid GND circuit surge
- Isolated voltage: $2,500 \mathrm{Vrms}$ impulse or 500VDC
- Supports RS-232 asynchronous communication standard
- Plug \& play, easy to use
- No need external power
- Use special communication cable or normal cable
- Baudrate: 57.6 kbps
- Full-duplex or half-duplex, small size


## 4. Product View (Appearance)



## 5. Structure Dimensions



## 6. Ordering

| Model | Signal/Port |  | Protection |  | Baudrate | Environment |  |  | Power |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | RS-232 | RS-232 |  |  | Temper | rature | Humidity |  |  |
|  | DB9 female | DB9 male | RS-232 INPUT | RS-232 OUTPUT |  | $-25 / 70{ }^{\circ}$ | $-40 / 85^{\circ} \mathrm{C}$ | 5-95\% | PortPowered | External Power |
| UT-212 | $\checkmark$ | $\checkmark$ | $\pm 3 \mathrm{KVESD}$ | $\pm 3 \mathrm{KVESD}$ |  | $300 \mathrm{bps}-57,600 \mathrm{bps}$ |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |

